# EPX 82

EPX 82 combines functional toughness, stiffness, and temperature resistance, making it useful for a variety of automotive, industrial, and consumer applications.

| <b>Tensile Properties*</b> ISO 527-2, Type 1A, 5 mm/min | Metric   | US      |
|---------------------------------------------------------|----------|---------|
| Tensile Modulus                                         | 2800 MPa | 410 ksi |
| Yield Strength                                          | 80 MPa   | 10 ksi  |
| Ultimate Tensile Strength                               | 80 MPa   | 10 ksi  |
| Elongation at Break                                     | 5%       | 5%      |

| Flexural Properties* ASTM D790-B | Metric   | US      |
|----------------------------------|----------|---------|
| Flexural Stress at 5% strain     | 130 MPa  | 19 ksi  |
| Flexural Modulus (Chord, 0.5-1%) | 3000 MPa | 430 ksi |

| Impact Properties*                             | Metric                | US                      |
|------------------------------------------------|-----------------------|-------------------------|
| Gardner, ASTM D5420                            | 0.5 J                 | 0.4 ft-lb               |
| Unnotched Charpy, ISO 179-1/1eA                | 25 kJ/m²              | 12 ft-lb/in²            |
| Notched Charpy (Machined Notch), ISO 179-1/1eA | 4.4 kJ/m <sup>2</sup> | 2 ft-lb/in <sup>2</sup> |
| Unnotched Izod, ASTM D4812                     | 370 J/m               | 7 ft-lb/in              |
| Notched Izod (Machined Notch), ASTM D256       | 45 J/m                | 0.8 ft-lb/in            |

| Thermal Properties                                          | Metric     | US               |
|-------------------------------------------------------------|------------|------------------|
| Heat Deflection Temperature* at 0.455 MPa/66 psi, ASTM D648 | 130 °C     | 270 °F           |
| Heat Deflection Temperature* at 1.82 MPa/264 psi, ASTM D64  | 120 °C     | 250 °F           |
| Coefficient of Thermal Expansion (-60, 100 °C), ASTM E831   | 90 ppm/°C  | 50 ppm/°F        |
| Heat Capacity, 23 °C, ASTM E1269                            | 1.3 J/g-°C | 0.3 BTU/lb-°F    |
| Thermal Conductivity, ASTM C518                             | 0.2 W/m-k  | 1.3 BTU/hr-ft-°F |
| Flammability, UL 94 (1.5 mm, 3.0 mm)                        | НВ         | НВ               |

The information in this document includes values derived from printing various parts, reflects an approximation of the mean value of a range of values, and is intended for reference and comparison purposes only. This information should not be used for testing, design specification or quality control purposes. End-use material performance can be impacted by, but not limited to, design, processing, color treatment, operating and end-use conditions, test conditions, etc. Actual values will vary with build conditions. In addition, product specifications are subject to change without notice.

This information and Carbon's technical advice are given to you in good faith but without warranty. The application, use and processing of these and other Carbon products by you are beyond Carbon's control and, therefore, entirely your own responsibility. Carbon products are only to be used by you, subject to the terms of the written agreement by and between you and Carbon.

You are responsible for determining that the Carbon material is safe, lawful, and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. CARBON MAKES NO WARRANTIES OF ANY KIND, EXPRESSED OR IMPLIED. INCLUDING, BUT NOT LIMITED TO, WARRANTIES THE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT. Further, it is expressly understood and agreed that you assume and hereby expressly release Carbon from all liability, in tort, contract or otherwise, incurred in connection with the use of Carbon products, technical assistance and information. No license with respect to any intellectual property is implied.

Parts were processed using an M series printer and a Smart Part Washer with DPM as the solvent.

\*Samples were kept in dry conditions and tested within 24 hours.

| Dielectric/Electric Properties         |                 |
|----------------------------------------|-----------------|
| Dielectric Strength, ASTM D149         | 18 kV/mm        |
| Dielectric Constant, ASTM D150         | 3.4             |
| Dissipation Factor, ASTM D150          | 0.007           |
| Volume Resistivity, ASTM D257          | 5.0 E+15 ohm-cm |
| Comparative Tracking Index, ASTM D3638 | 600 V           |

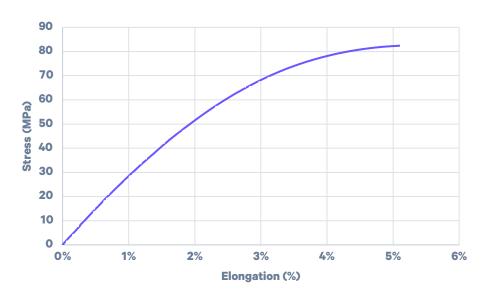
| General Properties                                   |                                   |
|------------------------------------------------------|-----------------------------------|
| Hardness, ASTM D2240                                 | 89 (instant), 88 (5 sec), Shore D |
| Density, ASTM D792                                   | 1.16 g/cm <sup>3</sup>            |
| Density (liquid resin)                               | 1.12 g/cm <sup>3</sup>            |
| Poisson's Ratio                                      | 0.37                              |
| Taber Abrasion, ASTM D4060, CS-17, 1 kg, 100% vacuum | 40 mg/ 1000 cycles                |

The information in this document includes values derived from printing various parts, reflects an approximation of the mean value of a range of values, and is intended for reference and comparison purposes only. This information should not be used for testing, design specification or quality control purposes. End-use material performance can be impacted by, but not limited to, design, processing, color treatment, operating and end-use conditions, test conditions, etc. Actual values will vary with build conditions. In addition, product specifications are subject to change without notice.

This information and Carbon's technical advice are given to you in good faith but without warranty. The application, use and processing of these and other Carbon products by you are beyond Carbon's control and, therefore, entirely your own responsibility. Carbon products are only to be used by you, subject to the terms of the written agreement by and between you and Carbon.

You are responsible for determining that the Carbon material is safe, lawful, and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. CARBON MAKES NO WARRANTIES OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT. Further, it is expressly understood and agreed that you assume and hereby expressly release Carbon from all liability, in tort, contract or otherwise, incurred in connection with the use of Carbon products, technical assistance and information. No license with respect to any intellectual property is implied.

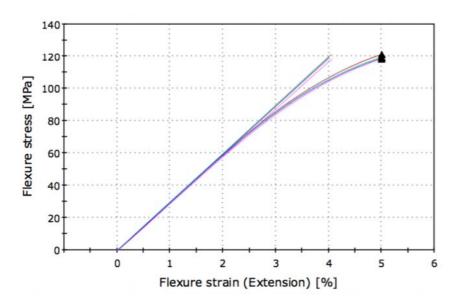
Parts were processed using an M series printer and a Smart Part Washer with DPM as the solvent.


# EPX 82

## **Extended TDS**

# **EPX 82 Mechanical Properties**

## **Representative Tensile Curve**


ISO 527-2, Type 1A, 5 mm/min



## **Representative Flexural Curve**

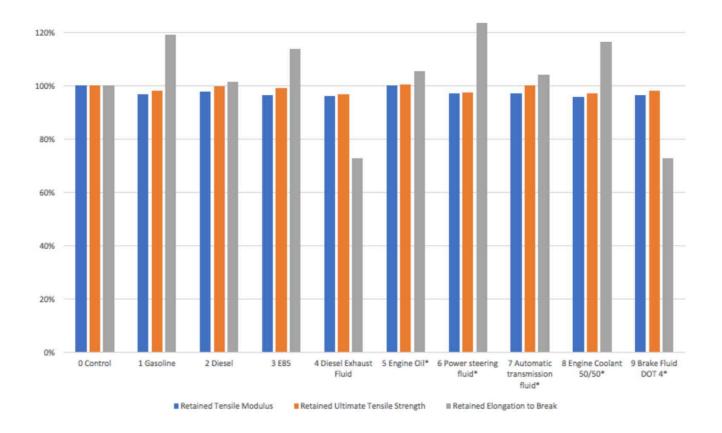
ASTM D790-B

Samples are tested to 5% extension.



Flexural test method: ASTM D790-B, 40mm span, sample thickness: 3.18mm, dry

# **EPX 82 Chemical Compatibility**

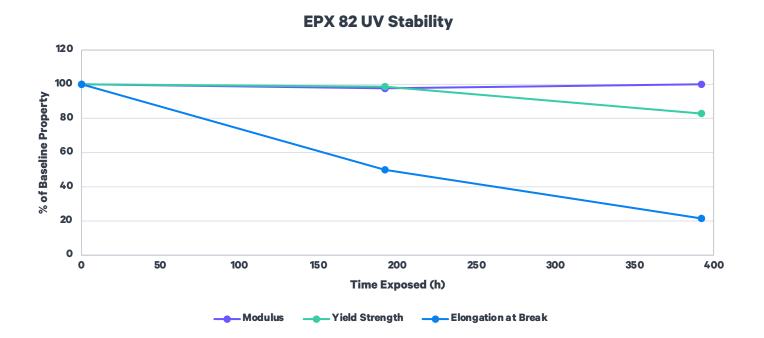

|                                                   | Mass Gain*<br>(%) |
|---------------------------------------------------|-------------------|
| Household Chemicals                               |                   |
| Bleach (NaClO, 5%)                                | < 5%              |
| Sanitizer (NH <sub>4</sub> Cl, 10%)               | < 5%              |
| Distilled Water                                   | < 5%              |
| Sunscreen (Banana Boat, SPF 50)                   | < 5%              |
| Detergent (Tide, Original)                        | < 5%              |
| Windex Powerized Formula                          | < 5%              |
| Hydrogen Peroxide (30%)                           | < 5%              |
| Ethanol (95%)                                     | 5 - 15%           |
| Industrial Fluids                                 |                   |
| Engine Oil (Havoline SAE 5W-30)                   | < 5%              |
| Brake Fluid (Castrol DOT-4)                       | < 5%              |
| Airplane Deicing Fluid (Type I Ethylene Glycol)   | -                 |
| Airplane Deicing Fluid (Type I Propylene Glycol)  | -                 |
| Airplane Deicing Fluid (Type IV Ethylene Glycol)  | -                 |
| Airplane Deicing Fluid (Type IV Propylene Glycol) | -                 |
| Transmission Fluid (Havoline Synthetic ATF)       | < 5%              |
| Engine Coolant (Havoline XLC, 50%/50% premixed)   | < 5%              |
| Diesel (Chevron #2)                               | < 5%              |
| Gasoline (Chevron #91)                            | -                 |
| Skydrol 500B-4                                    | < 5%              |
| Strong Acid/Alcohol/Base                          |                   |
| Sulfuric Acid (30%)                               | < 5%              |
| Sodium Hydroxide (10%)                            | < 5%              |

<sup>\*</sup>Percent weight gained after one week submersion following ASTM D543. Values do not represent changes in dimension or mechanical properties.

# **EPX 82 Chemical Compatibility cont.**

## **USCAR2**

Epoxies as a chemical family exhibit excellent chemical resistance. EPX 82 shows similar performance, showing no surface blemishes and minimal change in tensile properties after chemical exposure simulating splash contact per USCAR2 conditions.



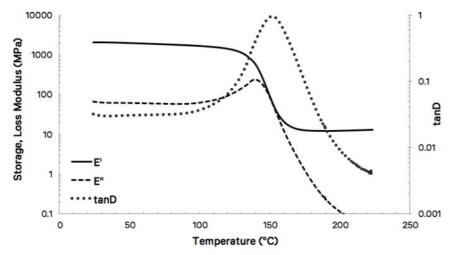

**Treatment Method:** Samples submerged in test liquid for 30 minutes at 23 °C or 50 °C (starred) then removed from test liquid and allowed to sit at ambient room temperature conditions for 1 week (samples were not wiped).

Test Method: ISO 527-2, Type I, 5 mm/min

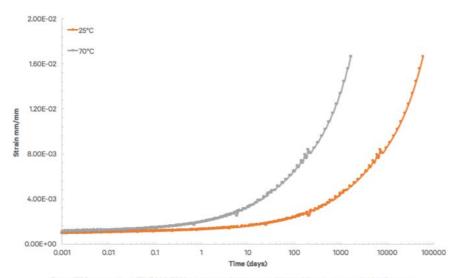
# **EPX 82 UV Aging**

Natural polymer aging can occur in the presence of light, sun, and heat. Carbon evaluated the UV aging performance of EPX 82 using ASTM D4459, which is intended to simulate indoor exposure of solar radiation through glass.




ASTM 4459: Q-Sun XE-1, 0.8 W/m²/nm at 420 nm, 55 °C ASTM D638: Type V, 500 mm/min, average values represented

# **EPX 82 Thermal Properties**

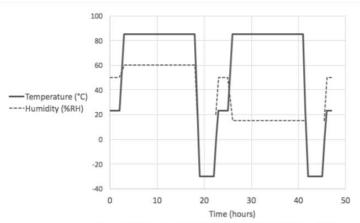

## **DMA and Creep**

EPX 82 has excellent heat resistance, with a heat deflection temperature (0.455 MPa) greater than 100 °C (exact value depends on sample conditioning - see Water Uptake section). EPX 82 exhibits a sharp transition in dynamic mechanical analysis. The low loss modulus and damping coefficient (tanD) correlate to excellent dimensional stability at elevated temperatures.

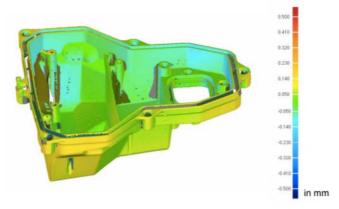
This is further reflected in tests of EPX 82's creep resistance. Creep time-temperature superposition is used to simulate long-term creep behavior.



Test method: TA Q800 DMA, single cantilever mode, 25-225°C sweep, 1°C/min, 1 Hz, 1mm sample, dry-as-printed




Creep TTS test method: TA Q800 DMA, single cantilever mode, 30x15x3.2 mm sample, 0-125°C sweep at 5°C increments with 5 minute isothermal and 10 minute deformation, 2 MPa applied load, dry


## **EPX 82 Material Endurance**

## **Automotive**

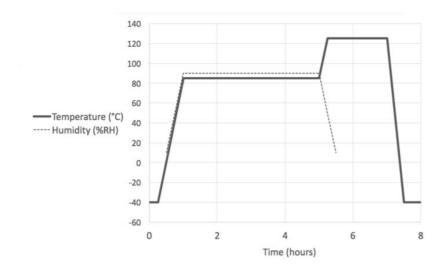
EPX 82 is a cross-linked aromatic epoxy/amine, which leads to excellent retention of material properties during high temperature aging, temperature/humidity cycling, and thermal shock. EPX 82 can retain function with minimal property degradation after aging tests required for automotive and industrial brackets/mounts/housings.



Temp/humidity cycling schedule: cycle repeated 4x, 240 hours total



DC charger housing shows minimal dimensional change after automotive thermal/humidity cycling, with 95% of points within ±150um of initial


|                            | Initial* | Retained after heat aging<br>(168 h at 100 °C) | Retained after temp/<br>humidity cycling<br>(240 h, cycle<br>shown above) |
|----------------------------|----------|------------------------------------------------|---------------------------------------------------------------------------|
| Tensile Modulus            | 3000 MPa | 100%                                           | 95%                                                                       |
| Yield strength             | 70 MPa   | 100%                                           | 100%                                                                      |
| Elongation at Yield        | 5%       | 100%                                           | 95%                                                                       |
| Elongation at Break        | 10%      | 100%                                           | 90%                                                                       |
| Notched Izod Impact (23°C) | 50 J/m   | 100%                                           | 95%                                                                       |

<sup>\*</sup>Conditioned ASTM D638 Type V dogbones and Izod bars

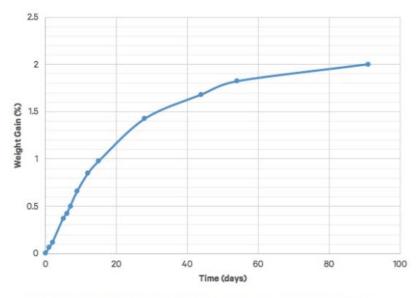
## **EPX 82 Material Endurance cont.**

## **Connectors**

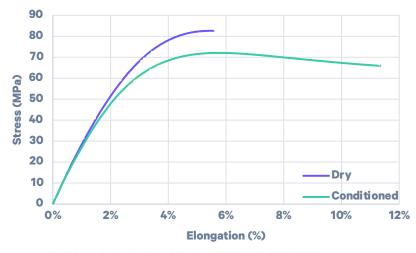
EPX 82 is a cross-linked aromatic epoxy/amine, which leads to excellent retention of material properties during high temperature aging, temperature/humidity cycling, and thermal shock. EPX 82 can retain function with minimal property degradation after aging tests required for automotive and industrial brackets/mounts/housings.






| Electrical connecto         | r testing | % Retained                        |                                                  |                                             |
|-----------------------------|-----------|-----------------------------------|--------------------------------------------------|---------------------------------------------|
|                             | Initial*  | Heat aging:<br>1008 hours, 125 °C | Temp/humidity cycling:<br>40 cycles, shown above | Thermal shock:<br>100 cycles, -40-125<br>°C |
| Tensile Modulus             | 3000 MPa  | 100%                              | 95%                                              | 100%                                        |
| Yield strength              | 70 MPa    | 110%                              | 100%                                             | 105%                                        |
| Elongation at Yield         | 5%        | 105%                              | 95%                                              | 95%                                         |
| Elongation at Break         | 10%       | 75%                               | 90%                                              | 80%                                         |
| Notched Izod Impact (23 °C) | 50 J/m    | 100%                              | 95%                                              | 95%                                         |

<sup>\*</sup>Conditioned ASTM D638 Type V dogbones and Izod bars


## **EPX 82 Water Uptake**

### **Connectors**

Like the polyamide family of polymers (Nylons), EPX 82 absorbs and releases water from the atmosphere based on ambient humidity. This process is reversible and the impact of this moisture uptake on mechanical properties is relatively low due to the highly crosslinked nature of EPX 82. EPX 82 takes up approximately 2% by weight of water at 23 °C and 50% relative humidity in equilibrium conditions. This water leads to small decreases in modulus and yield strength, with accompanying increases in elongation and a decrease in heat deflection temperature (0.455 MPa) to approximately 105°C at equilibrium conditions.



Test method: ASTM D570 coupons (3" x 1" x 1/8"), conditioned at 23°C/50%RH



Conditioning method: Conditioned 2 weeks, 23°C/50%RH. ASTM D638 Type V dogbones

## **EPX 82**

## Conditioned Mechanical Properties

| <b>Tensile Properties</b> ISO 527-2, Type 1A, 5 mm/min | Metric   | US      |
|--------------------------------------------------------|----------|---------|
| Tensile Modulus                                        | 2800 MPa | 410 ksi |
| Yield Strength                                         | 72 MPa   | 10 ksi  |
| Ultimate Tensile Strength                              | 67 MPa   | 10 ksi  |
| Elongation at Break                                    | > 5%     | > 5%    |

| Flexural Properties ASTM D790-B  | Metric   | US      |
|----------------------------------|----------|---------|
| Flexural Stress at 5% strain     | 110 MPa  | 16 ksi  |
| Flexural Modulus (Chord, 0.5-1%) | 2900 MPa | 420 ksi |

| Impact Properties                              | Metric                | US                      |
|------------------------------------------------|-----------------------|-------------------------|
| Gardner, ASTM D5420, GC, 3.2 mm                | 0.56 J                | 0.41 ft-lb              |
| Unnotched Charpy , ISO 179-1/1eA               | 26 kJ/m²              | 12 ft-lb/in²            |
| Notched Charpy (Machined Notch), ISO 179-1/1eA | 4.2 kJ/m <sup>2</sup> | 2 ft-lb/in <sup>2</sup> |
| Unnotched Izod, ASTM D256                      | 350 J/m               | 7 ft-lb/in              |
| Notched Izod (Machined Notch), ASTM D256       | 42 J/m                | 0.8 ft-lb/in            |

| Thermal Properties                                         | Metric | US     |
|------------------------------------------------------------|--------|--------|
| Heat Deflection Temperature at 0.455 MPa/66 psi, ASTM D648 | 105 °C | 220 °F |
| Heat Deflection Temperature at 1.82 MPa/264 psi, ASTM D64  | 90 °C  | 200 °F |

The information in this document includes values derived from printing various parts, reflects an approximation of the mean value of a range of values, and is intended for reference and comparison purposes only. This information should not be used for testing, design specification or quality control purposes. End-use material performance can be impacted by, but not limited to, design, processing, color treatment, operating and end-use conditions, test conditions, etc. Actual values will vary with build conditions. In addition, product specifications are subject to change without notice.

This information and Carbon's technical advice are given to you in good faith but without warranty. The application, use and processing of these and other Carbon products by you are beyond Carbon's control and, therefore, entirely your own responsibility. Carbon products are only to be used by you, subject to the terms of the written agreement by and between you and Carbon.

You are responsible for determining that the Carbon material is safe, lawful, and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. CARBON MAKES NO WARRANTIES OF ANY KIND, EXPRESSED OR IMPLIED. INCLUDING, BUT NOT LIMITED TO, WARRANTIES THE MERCHANTABILITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT. Further, it is expressly understood and agreed that you assume and hereby expressly release Carbon from all liability, in tort, contract or otherwise, incurred in connection with the use of Carbon products, technical assistance and information. No license with respect to any intellectual property is implied.

Parts were processed using an M series printer and a Smart Part Washer with DPM as the solvent. Conditioned values were measured after 1 week at  $23\,^{\circ}\text{C}$  and 50% relative humidity.

# **EPX 82 Vehicle Interior Air Quality**

(VIAQ)

EPX 82 passes stringent odor, fogging, and emissions standards required for interior automotive applications.

| Material Emissions - Automotive |                                     |            |                |  |
|---------------------------------|-------------------------------------|------------|----------------|--|
|                                 | Test Method                         | Results    | General Target |  |
| Odor                            | VDA 270                             | Grade: 3.5 | < 4            |  |
| Volatile Organics (VOC)         | VDA 278                             | 3 ppm      | < 100 ppm      |  |
| Fogging                         | DIN 75201, Method B,<br>Gravimetric | 0.04 mg    | < 2 mg         |  |
| Semi-Volatile Organics (FOG)    | VDA 278                             | 0 ppm      | < 250 ppm      |  |

#### Test Report No. 4548732/A-01

#### DIN 75201 B

Client : Carbon, Inc.

Order : Test according to DIN 75201 B

: 04/05/2018 (sent)

SGS INSTITUT FRESENIUS GmbH, Am Technologiepark 10, 45699 Herten, TRP Automotive Testhouse

: May 2018 Test period

Conditioning : 7 days at 23°C

Test method

: Test method DIN 75201B describes the gravimetric fogging test. The test specimen is placed on the bottom of a glass beaker. The beaker is covered with an aluminium foil, where volatile components from the test specimen are able to condense. The foil is cooled to 21±1°C by a cooling-plate. The prepared beaker is held at a temperature of 100±0,3°C for 16 h inside a controlled

ermostatic bath. The condensable constituents G ndensed on the aluminium foil are determined by sighing the foil before and after the test.

: Lauda master / HAAKE CPA 225D

| No. | SGS IF<br>Sample number | G <sub>0</sub> in mg | G <sub>1</sub> in mg | G in mg |
|-----|-------------------------|----------------------|----------------------|---------|
| 1   | 180438932               | 638,45               | 638,51               | 0,06    |
| 2   | 180438932               | 631,17               | 631,18               | 0,01    |

fogging value G 0,04 mg

DIDP-standard ~ 0,65 mg) 0,67 mg

0,05 mg

In Michel 14 5-65232 Teammon 1+49-0129-748-9 1+49-0129-744-130 w

#### Test Report No. 4548732/A-01

#### **VDA 270**

: Carbon, Inc. : Odour test acc. to VDA 270 : 7 days at 23°C

SGS INSTITUT FRESENIUS GmbH, Carried out by

: May 2018 Test period

: VDA 270 B3 (November 2016)

Determination of the odour characteristics of materials

The sample will be placed on the bottom of three different 1-L-glass beakers with fixed quantities or sizes. All beakers will be closed with a glass plate (air light). The beaker thus prepared will be positioned in a warming chamber under given environmental parameters: 80 °C / 2 h. After each pend the odour characteristics of each sample will be tested by three Testers.

Warming chamber/air conditioning with unity to control the

Date of measurement 25/05/2018

| 80°C / 2 h | 10       | ٧        | DA 270   | Fil   | 3,5   |
|------------|----------|----------|----------|-------|-------|
|            | Tester 1 | Tester 2 | Tester 3 | Spec. | Score |
|            | 3,5      | 3,5      | 3,0      | 83    | 3,3   |

A-(10 ± 1) g B-(20 ± 2) am C - (50 ± 5) cm<sup>3</sup>

5 - strong disturting

page 10 of 18 In Marel W. 5-9232 Tamorain: 1 - 98323 No. 8 5 - 98328 No. 105 on

#### Test Report No. 4548732/A-01

#### **VDA 278**

Client : Carbon, Inc.

Sample received : 04/05/2018 (sent)

Conditioning 7 days at 23°C

Carried out by : SGS INSTITUT FRESENIUS GmbH,

Am Technologiepark 10, 45699 Herten,

TRP Automotive Testhouse

Test period : May/June 2018

Test method : VDA 278 (October 2011)

In the test method VDA 278 -Thermodesorption analysis of organic emission for the characterization of non-metallic car materials - of the association of the german automotive industry (VDA) the substances are measured which are emitted at 90°C (VOC) and 120°C (FOG). For this purpose a sample of the test material is heated in a current of inert gas, and the substances released are frozen out in the refrigerated injector of the gas chromatograph. After separation of the mixture of substances, the individual substances are, as far as possible, identified by means of a mass-sensitive detector. The VOC and FOG measurements are carried out with the same test samples. Quantification of the gaseous emissions (VOC) is made against an external toluene standard, while the condensable emissions (FOG) are quantified against hexadecane (C16-n-alkane). The individual concentrations are given in ppm (mg/kg) as total emissions in toluene or hexadecane equivalents. The substances which could be identified within the total emission are individually listed in the raw data.

The identified substances have also been examined for the extent to which they are classified in the applicable edition of Regulation (EG) No. 1272/2008 (CLP Regulation) including ATP and Annexe in the Carc., Muta. and Repr. 1A, 1B, 2.

#### Devices:

- Gerstel TDS incl. Autosampler
- Gerstel Kaltaufgabesystem KAS 4
- GC Hewlett-Packard 6890 Mass Selective Detector "MS" Hewlett-Packard 5973

SGS IF sample number 180438932 Sample identification #4 Date of measurement 05/06/2018



| Test parameter |                | Measured value in ppm (μg/g) |
|----------------|----------------|------------------------------|
| voc            | total emission | 3                            |
|                | second value   | 1                            |
| FOG            | total emission | 0                            |

# **EPX 82 Biocompatibility**

#### **Biocompatibility Testing**

Printed parts were provided to NAMSA for evaluation in accordance with ISO 10993-5, *Biological evaluation of medical devices - Part 5:*Tests for in vitro cytotoxicity, and ISO 10993-10, *Biological evaluation of medical devices - Part 10:* Tests for irritation and skin sensitization (*GPMT*). Parts were processed using an M series printer and a Smart Part Washer with DPM as the solvent. The results for all tests indicated that EPX 82 passed the requirements for biocompatibility according to the above tests. **Carbon makes no representation and is not responsible for the results of any biocompatibility tests other than those specified above.** 

#### Disclaimer

Biocompatibility results may vary based on printing and/or post-processing procedures.

Subscriber acknowledges the contents of this document are subject to the Terms and Conditions outlined in the Subscription Agreement, including the Restrictions on Use section.

DO NOT USE CARBON MATERIALS IN MEDICAL APPLICATIONS INVOLVING IMPLANTATION IN THE HUMAN BODY OR CONTACT WITH BODY FLUIDS OR TISSUES UNLESS THE MATERIAL HAS BEEN PROVIDED FROM CARBON UNDER A WRITTEN CONTRACT THAT IS CONSISTENT WITH THE CARBON POLICY REGARDING MEDICAL APPLICATIONS AND EXPRESSLY ACKNOWLEDGES THE CONTEMPLATED USE. CARBON MAKES NO REPRESENTATION, PROMISE, EXPRESS WARRANTY OR IMPLIED WARRANTY CONCERNING THE SUITABILITY OF THESE MATERIALS FOR USE IN IMPLANTATION IN THE HUMAN BODY OR IN CONTACT WITH BODY FLUIDS OR TISSUES. If Carbon has permitted in the Subscription Agreement use of the Carbon printer for applications that require biocompatibility, Subscriber acknowledges that it is the responsibility of Subscriber, its respective customers and end-users to determine the biocompatibility of all printed parts for their respective uses.

Carbon, Inc. | www.carbon3d.com 1089 Mills Way Redwood City, CA 94063 1 (650) 285-6307